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Abstract

In the domain of group theory, one finds symmetric groups
or permutation groups to be significant when it comes to under-
standing the symmetries and structure of mathematical objects,
extending its applications to topology, combinatorics and cryp-
tography. In this report, we will discuss about the group of au-
tomorphisms - structure-preserving maps - on symmetric groups
and list a few important theorems.
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1 Objective

In this project, we prove the following theorem related to automorphism group of the symmetric group(Sn) -
Theorem 1.1: Let n ∈ N and Sn be the corresponding symmetric group, then -

Aut(Sn) ∼=

{
Sn if n ≥ 2 , n ̸= 6

S6 ⋊ Z
2Z if n = 6

Also, Inn(Sn) ∼= Sn, for n ≥ 3.

2 Introduction

Before setting out to prove the theorem 1.1, let us look at some preliminary definitions and theorems[1] -

2.1 Definitions

• Symmetric group : Let X be a non-empty set. The set of all bijective maps on X forms a group under
composition of maps, called permuation group or symmetric group of X and each element is called a
permutation. It is denoted by Sym(X) or Sn, where n = |X|.

• Cycles : Let i ∈ [n] and σ ∈ Sn. Since σ is bijective with a finite codomain, ∃t ∈ [n] such that σt(i) = i
and choose t to be minimal in this regard. Now, (i, σ(i), σ2(i), ...., σt−1(i)) is called a cycle of length t or
a t-cycle.

• Transposition : A cycle of length two is called a transposition.

• Automorphism group : Let G be a group. The set of all bijective homomorphisms on G forms a group
under composition of maps, called automorphism group of G and each element is called a automorphism.
The group is denoted by Aut(G).

• Inner automorphism : Let G be a group and g ∈ G. Inner automorphism of G induced by g is defined
as ϕg ∈ Aut(G), where ϕg(x) = g−1xg. The collection of all such inner automorphisms forms a subgroup
of Aut(G) and is denoted by Inn(G).

• Semi-direct product : Let H and K be two groups and ϕ : K → Aut(H) be a homomorphism. Semi-
direct product of H and K with respect to homomorphism ϕ, denoted by H⋊ϕK, is defined as the group
of cartesian product of H and K with the following group operation -

(h1, k1) ⋆ (h2, k2) = (h1ϕ(k1)(h2), k1k2)

2.2 Theorems

We state the following theorems without proofs -

• Theorem 2.2.1 : Let G be a group. Then,

Inn(G) ∼=
G

Z(G)

• Theorem 2.2.2 : Let σ1, σ2 ∈ Sn. σ1 and σ2 commute if and only if

{i ∈ [n] | σ1(i) ̸= i} ∩ {j ∈ [n] | σ2(j) ̸= j} = ∅

• Theorem 2.2.3 : Every permutation can be written as a cycle or a product of disjoint cycles. Let
σ = α1α2...αk be the disjoint cycle representation, where length of αi is ti. By theorem 2.2.2, disjoint
cycles commute and hence we arrange αis in such a way ti+1 > ti ∀i ∈ [k− 1]. Then σ is said to have the
cycle type (t1, t2, ...., tk).

• Theorem 2.2.4 : Every permutation can be written as a product of transpositions.
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• Theorem 2.2.5 : Let α, β ∈ Sn. α and β are conjugate in Sn (i.e., ∃σ ∈ Sn such that α = σ−1βσ) if and
only if α and β are of same cycle type.

• Theorem 2.2.6 : Let τi = (i, i+ 1) ∈ Sn. Then, Sn is generated by {τi | i ∈ [n− 1]}.

• Theorem 2.2.7 : Let n ≥ 3, then, Z(Sn) = 1.

• Theorem 2.2.8 : Let λ be a conjugacy class of Sn containing elements of cycle type 1i1 , 2i2 , ...., nin .
Then,

|λ| = n!

(1i1 .2i2 .....nin).(i1!.i2!....in!)

• Theorem 2.2.9 : Let ϕ : G1 → G2 be a homomorphism. Then,

– ϕ(G1) ≤ G2

– Ker(ϕ)⊴G1

– If Ker(ϕ) is trivial, then ϕ is injective.

• Theorem 2.2.10 : For n ≥ 5, the only normal subgroups of Sn are {1}, An, Sn.

• Theorem 2.2.11 : Let G be a group. Then,

Inn(G)⊴Aut(G)

3 Inn(Sn)

Theorem 3.1 : Inn(Sn) ∼= Sn, for n ≥ 3.
Proof : From theorem 2.2.1,

Inn(Sn) ∼=
Sn

Z(Sn)

We know from theorem 2.2.7 that Z(Sn) = 1 for n ≥ 3. Hence,

Inn(Sn) ∼=
Sn

Z(Sn)
=
Sn

1
= Sn

=⇒ Inn(Sn) ∼= Sn , n ≥ 3 ■

4 Inn(Sn) and Aut(Sn)

Lemma 4.1 : Let ϕ ∈ Aut(Sn). ϕ ∈ Inn(Sn) if and only if ϕ takes each transposition to a transposition.
Proof : If ϕ is an inner automorphism, it conjugates each element of Sn with a fixed σ ∈ Sn. Hence, ϕ

conjugates any transposition α ∈ Sn with σ and by theorem 2.2.5, ϕ(α) = σ−1ασ is also a transposition. Hence,
ϕ takes every transposition to another transposition.

Let ψ ∈ Sn such that ψ takes every transposition to another transposition. Let ψ((1, 2)) = (a1, a2) and
ψ((2, 3)) = (b1, b2). If (a1, a2) and (b1, b2) are disjoint, they commute and ψ((1, 2)(2, 3)) = ψ((2, 3)(1, 2)), which
implies ψ((2, 3, 1)) = ψ((2, 1, 3)). This is a contradiction to the injectivity of ψ. Hence they are not disjoint.
For the same reason, they can’t be equal. Hence, their supports share a common element.

Inductively, we can assume ψ((i, i+ 1)) = (ai, ai+1), i ∈ [n− 1]. Let σ ∈ Sn defined by σ(i) = ai, ∀i ∈ [n].
Now,

ϕσ((i, i+ 1)) = σ−1(i, i+ 1)σ = (σ(i), σ(i+ 1))

=⇒ ϕσ(τi) = (ai, ai+1) = ψ(τi) ,∀i ∈ [n− 1]

By theorem 2.2.6, τis generate Sn. Since, ϕσ and ψ have the same images for the elements of generator, the
automorphisms are equal. Hence, ψ = ϕσ is an inner automorphism. ■
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Definition : Let k ∈ N such that 2 ≤ 2k ≤ n. Define Tk ⊂ Sn as -

Tk = {σ ∈ Sn | σ is of cycle type 2k}

Lemma 4.2 : Let ϕ ∈ Aut(Sn) and m ≥ 1 such that 2 ≤ 2m ≤ n. Then, ∃k ≥ 1 such that ϕ(Tm) ⊆ Tk.
Proof : Let σ1 ∈ Tm. By definition, σ1 is of cycle type 2m and hence the order of σ1 is 2 (l.c.m of orders

of disjoint cycles, which are all 2-cycles). Since ϕ is an automorphism, ϕ(σ1) should be of order 2. Hence, its
cycle type should be 2k for some k ∈ N (Any cycle of length greater than 2 will change the lcm of lengths and
hence increase the order from 2). Therefore, σ1 ∈ Tk.

Let α ∈ Tm be an arbitrarily chosen element. Since both α and σ1 have cycle type 2m, they are conjugate
to each other by theorem 2.2.5. Hence, ∃β such that -

α = β−1σ1β

=⇒ ϕ(α) = ϕ(β−1)ϕ(σ1)ϕ(β)

=⇒ ϕ(α) = ϕ(β)−1ϕ(σ1)ϕ(β)

Hence, ϕ(α) and ϕ(σ1) are conjugate to each other. Therefore, by theorem 2.2.5, they have the same cycle
type, i.e., ϕ(α) ∈ Tk. By arbitrary choice, ∀α ∈ Tm, ϕ(α) ∈ Tk. Hence, ϕ(Tm) ⊆ Tk. ■

Lemma 4.3 : Let ϕ ∈ Aut(Sn). Then, ∃k ≥ 1 such that ϕ(T1) = Tk.
Proof : By lemma 4.2, ∃k ≥ 1 such that ϕ(T1) ⊆ Tk. Since ϕ is an automorphism, ϕ−1 ∈ Aut(Sn). Since

ϕ(T1) ⊆ Tk, ∃α ∈ Tk such that ϕ−1(α) ∈ T1. Therefore, by lemma 4.2, ϕ−1(Tk) ⊆ T1 =⇒ Tk ⊆ ϕ(T1). Hence,
ϕ(T1) = Tk. ■

Lemma 4.4 : Let n, k ∈ N, n ≥ 2, n ̸= 6 and 2 ≤ 2k ≤ n. Then, the only solution to the following
equation is k=1.

2k−1k!(n− 2k)! = (n− 2)! (1)

Proof : By substitution, we find that k = 1 is a solution for every n ≥ 2. Now, we have to show that k = 1
is the only solution if n ̸= 6.
For n=2 and 3, k can only take value 1 and hence is the only solution.
For n=4, k can also take the value 2. Substituting in eq(1), we get 4 = 2!. Hence, k = 2 is not a solution.
Similar to the previous case, for n=5, k can take values 1 and 2 and substituting k=2 in eq(1) gives 4 = 3!.
Hence, k = 2 is not a solution.
Now, for n ≥ 7, we will have two cases -
Case 1: 2k ̸= n
In this case, we can write eq(1) as -

2k−1(n− 2k)! =
(n− 2)!

k!
=⇒ (2.2.....2)(2.3.....(n− 2k)) = (k + 1)....(n− 2)

Note that LHS and RHS of the above equation has (n − k − 2) terms each. If k ≥ 2, we compare each factor
of LHS and RHS in the order written above - 2 < k + 1 , 2 < k + 2, ...., 2 < 2k − 1, 2 < 2k, 3 < 2k + 1, ....,
n − 2k < n − 2. Since each factor of LHS is less than the corresponding factor in RHS, the equality doesn’t
hold. Hence the equation doesn’t have any solution in the range k ≥ 2.
Case 2: 2k = n
For n = 2k, eq(1) takes the form -

(2k − 2)! = 2k−1k! (2)

Since 2k = n ≥ 7, k ≥ 4.
We claim that

(2k − 2)! > 2k−1k! ∀k ≥ 4

For k=4, 6! > 8.4! and our claim remains true.
Assume that the claim is true for k = m ≥ 4 ,i.e., (2m− 2)! > 2m−1m!.
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Now, for k=m+1 -

(2(m+ 1)− 2)! = (2m)! = 2m(2m− 1)(2m− 2)!

=⇒ (2(m+ 1)− 2)! > 2m(2m− 1)2m−1m!

(Induction hypothesis)

=⇒ (2(m+ 1)− 2)! > m(2m− 1)2mm!

Since m ≥ 4, 2m− 1 ≥ 7. Hence,
m(2m− 1) ≥ 7m > m+ 1. Therefore,

(2(m+ 1)− 2)! > (m+ 1)2mm!

=⇒ (2(m+ 1)− 2)! > 2m(m+ 1)!

Hence, the claim is true for k = m+ 1, whenever it is true for k = m. Hence, by induction principle, the claim
is true for all k ≥ 4.
By the previous claim, eq(2) has no solution for k ≥ 4, i.e., for n ≥ 7.

Hence, k = 1 is the only solution of eq(1) for n ̸= 6. ■

Theorem 4.1 : Let n ∈ N and n ≥ 2. Aut(Sn) ∼= Sn, if n ̸= 6.
Proof : Let ϕ ∈ Aut(Sn). By lemma 4.3, ∃k ≥ 1 such that ϕ(T1) = Tk. Since ϕ is bijective, |T1| = |Tk|.

Note that T1 and Tk are conjugacy classes (all elements are of same cycle type and any element of the same
cycle type is contained in the set), hence we can compute their sizes using theorem 2.2.8 as -

|T1| = |Tk| =⇒ n(n− 1)

2
=

n!

2kk!(n− 2k)!

=⇒ 2k−1k!(n− 2k)! = (n− 2)!

By lemma 4.4, the only solution to the above equation is k = 1 since n ̸= 6. Therefore, ϕ(T1) = T1, i.e., ϕ takes
every transposition to another transposition and by lemma 4.1, ϕ ∈ Inn(Sn). Since ϕ ∈ Aut(Sn) is chosen
arbitrarily, ∀ϕ ∈ Aut(Sn), ϕ ∈ Inn(Sn). Hence, Aut(Sn) ⊆ Inn(Sn). Also, we know that Inn(Sn) ⊆ Aut(Sn).
Therefore, Aut(Sn) = Inn(Sn), ∀ 3 ≤ n ∈ N and n ̸= 6.
Hence, we can conclude using theorem 3.1 that -

Aut(Sn) = Inn(Sn) ∼= Sn

for all n ≥ 3 and n ̸= 6. ■

5 The Exceptional Case : Aut(S6)

We find that n = 6 and k = 3 satisfies eqn(1). This motivates us to doubt whether there could be an outer
automorphism θ of S6 such that θ(T1) = T3. We will resolve this doubt through the following lemma.

Lemma 5.1 : ∃ θ ∈ Aut(S6) such that θ is an outer automorphism.
Proof : Define θ : S6 → S6 as -

θ((1, 2)) = (1, 2)(3, 4)(5, 6)

θ((2, 3)) = (1, 4)(2, 5)(3, 6)

θ((3, 4)) = (1, 2)(3, 5)(4, 6)

θ((4, 5)) = (1, 3)(2, 4)(5, 6)

θ((5, 6)) = (1, 2)(3, 6)(4, 5)

Here, we have defined θ on the generators of S6 and we find the image of an arbitrary element of S6 under θ by
writing it as a product of generating elements and then θ acts on the product in such a way that θ remains as
a homomorphism.
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Claim 5.1.1 : θ2 = Id
Proof of claim : Let τi = (i, i+ 1) 1 ≤ i ≤ 5. Note that -

θ2(τ1) = θ(θ(τ1)) = θ((1, 2)(3, 4)(5, 6))

=⇒ θ2(τ1) = (1, 2)(3, 4)(5, 6)(1, 2)(3, 5)(4, 6)(1, 2)(3, 6)(4, 5) = (1, 2) = τ1

Now, its only a matter of computations to verify that θ2(τi) = τi ∀ i ∈ [5], at each step using the property
of θ being a homomorphism.
Let α ∈ S6. Since τis generate S6,

α = τk1
.τk2

....τkm

=⇒ θ2(α) = θ(θ(τk1
).θ(τk2

)....θ(τkm
)) = θ2(τk1

).θ2(τk2
)....θ2(τkm

) = τk1
.τk2

....τkm
= α

=⇒ θ2(α) = Id(α)

Since, α ∈ S6 is chosen arbitrarily, we can conclude that θ2 = Id. Hence, the claim.

Let i ∈ [5] and θ(τi) = αi =⇒ θ2(τi) = θ(αi) =⇒ θ(αi) = τi. Hence, ∀ i ∈ [5], τi ∈ θ(S6). Since, θ is a
homomorphism, θ(S6) ≤ S6 using theorem 2.2.9 . Also, θ(S6) contains all generating elements of S6. Hence,
θ(S6) = S6 ,i.e., θ is surjective.

According to theorem 2.2.10, the only normal subgroups of S6 are {1}, A6, S6. Since Ker(θ) is a normal
subgroup of S6 according to theorem 2.2.9, kernel can be either trivial, S6 or A6. Ker(θ) can’t be S6, as θ takes
elements of S6 to non-identity elements. Also, Ker(θ) can not be A6, because it takes even permutations to
non-identity elements, for example, θ((1, 2)(3, 4)) = (3, 6)(4, 5) ̸= 1. Hence, Ker(θ) is trivial and therefore by
theorem 2.2.9, θ is injective.

Since θ is injective and surjective, θ ∈ Aut(S6). Also, by definition, θ takes transpositions to elements which
are not transpositions. So, θ ̸∈ Inn(S6). Hence, θ is an outer automorphism. ■

Lemma 5.2 : Aut(S6) = Inn(S6). < θ >, where, θ has the same definition as in the above lemma.
Proof : Clearly, Inn(S6). < θ >⊆ Aut(S6).

Let ϕ ∈ Aut(S6). If ϕ is an inner automorphism, ϕ ∈ Inn(S6). < θ >.
If ϕ is an outer automorphism, ϕ takes every transposition to a product of 3 transpositions, i.e., ϕ(T1) = T3.
Since θ is an outer automorphism, θ(T1) = T3 =⇒ θ−1(T3) = T1 and θ−1 is a well-defined function since θ is
bijective. Consider the map θ−1ϕ.

θ−1ϕ(T1) = θ−1(T3) = T1

Hence, θ−1ϕ takes every transposition to some other transposition and by lemma 4.1, θ−1ϕ = ψ ∈ Inn(S6).
Therefore, ϕ = θψ ∈ Inn(S6). < θ >. So, ∀ ϕ ∈ Aut(S6), ϕ ∈ Inn(S6). < θ >.
Hence, Aut(S6) = Inn(S6). < θ >. ■

Theorem 5.1 : Aut(S6) ∼= S6 ⋊ Z
2Z

Proof : By lemma 5.2, Aut(S6) = Inn(S6). < θ >. From claim 5.1.1 < θ >= {1, θ}. Since, θ is an outer
automorphism, 1 = Inn(S6)∩ < θ >. Also, by theorem 2.2.11, Inn(S6) ⊴ Aut(S6). Based on the above three
observations, we can conclude that Aut(S6) = Inn(S6)⋊ < θ >.
Since < θ >= {1, θ}, < θ >∼= Z

2Z and by theorem 3.1, Inn(S6) ∼= S6. Therefore, we can conclude that

Aut(S6) = Inn(S6)⋊ < θ >∼= S6 ⋊ Z
2Z . ■

6 Conclusion

In this project report, we studied the automorphism groups of symmetric groups and our analysis led us to
the conclusion which is stated as theorem 1.1. In the journey of studying the group structure of Aut(Sn), we
encountered certain critical lemmas and theorems which enlighted us about the behaviour of automorphisms
of Sn. It was quite surprising to note that how S6 stands out from the rest by having an ”exceptional” outer
automorphism. Finally, we studied the outer automorphisms of S6, revealing the total group structure of
Aut(S6).
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