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Abstract

In this report, we will discuss the basics of nonlinear dynamics
and will dive into the study of a nonlinear system - a population
growth model involving different population interactions. Nonlin-
ear dynamics involves the study of systems that are governed by
equations that are not of the linear form - such as population dy-
namics, double pendulum, weather dynamics and fluid dynamics.
We will begin our study with an analysis of first-order and linear
systems, introducing the notion of fixed points and their stabil-
ity and bifurcations and its different types. We will look into a
few numerical methods to solve these systems and phase plane
analysis. We will conclude by analyzing a second-order nonlinear
system of two populations interacting with each other.
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1 Introduction

1.1 Dynamical Systems

In this section, we will look into different dynamical
systems, their mathematical forms and a few termi-
nologies related to them. Two major types of dynami-
cal systems are:-

• Differential equations - describes the evolution of
systems in continuous time.

• Iterated maps - describes the evolution of systems
in discrete time.

Differential equations can be further classified into
ordinary and partial differential equations. Let us re-
strict our study to ordinary differential equations and
non-linear phenomena arising in their domain.

1.2 Ordinary Differential Equations

A general framework for an n-dimensional or nth-order
system of autonomous ordinary differential equations
would be -

ẋ1 = f1(x1, ......., xn)

.

.

ẋn = fn(x1, ......., xn)

The system is said to be non-autonomous if any of
the functions - f1,....,fn - has a time dependence.
In such a case, we define:-

xn+1 = t

=⇒ ˙xn+1 = 1

This definition makes the system (n+1)-dimensional.

1.3 The Nonlinear World

A system is said to be nonlinear if any of the functions
f1,....,fn has non-linear terms.
Such non-linear systems are difficult to deal with, as
most of them are unsolvable analytically. Hence we
rely on different numerical and graphical methods to
obtain a solution, at least qualitatively.
We observe that the systems become more and more
complex with an increase in the number of variables,
ranging from the study of logistic population growth
model and pendulum to neural networks and quantum
field theory.

2 First Order Systems

In this section, we analyze the simplest nonlinear sys-
tems,i.e, the first order systems. Inspirations drawn
from this study will help us tackle higher order systems.
The general form of a one- dimensional or first-order
autonomous system is -

ẋ = f(x) (1)

2.1 Geometric Approach - Flow on a
Line

We assume that an imaginary particle - phase point
- is moving along the real line such that ẋ gives the
velocity of the particle at position x , the velocity is
towards the increasing x-direction if ẋ > 0 and in the
opposite direction if ẋ < 0. Hence the differential equa-
tion ẋ = f(x) represents a vector field on the line.
Suppose a phase point starts from x0 and is carried by
the flow, then its position function x(t) is called the
trajectory based at x0.
Phase portrait is the graphical representation of all
qualitatively different trajectories of the system.

2.2 Fixed points and their Stability

x∗ is called a fixed point of the system ẋ = f(x) if
f(x∗) = 0. Hence, there is no flow at fixed points.
So, they represent the equilibrium solutions of the dif-
ferential equation since x(0) = x∗ =⇒ x(t) = x∗

∀t ∈ [0,∞).
Based on their stability, fixed points can be classified
into three -

• Stable fixed points : Flow is towards these
points.

• Unstable fixed points : Flow is away from
these points.

• Half-stable fixed points : Flow continues
through the point without changing direction.

Figure 1: Different types of fixed points

2.3 Linear Stability Analysis

In this section we analyse the stability of fixed points
by linearizing about them.
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Let x∗ be a fixed point and η(t) denotes a small per-
turbation away from x∗.

η(t) = x(t)− x∗

=⇒ η̇ = ẋ = f(x)

=⇒ η̇ = f(x∗ + η)

Using Taylor series expansion around x∗, we obtain -

η̇ = f(x∗) + ηf ′(x∗) +O(η2)

Since η(t) is a small perturbation, O(η2) can be ne-
glected.(Here, we assume that f ′(x∗) ̸= 0. If not,
O(η2) can’t be neglected.) Also, f(x∗) = 0 since x∗

is a fixed point. Hence,

η̇ ≈ ηf ′(x∗) (2)

Hence, the perturbation η(t) -

• grows exponentially if f ′(x∗) > 0, making x∗ un-
stable.

• decays if f ′(x∗) < 0, making x∗ stable.

3 Bifurcations

3.1 Definition and some terminologies

Consider the first-order system ẋ = f(x, r), where r is
some parameter. If the qualitative nature of solutions
when r < r0 is different from that of the solutions when
r > r0, then the system is said to have undergone a bi-
furcation at r = r0 and r0 is called the bifurcation
point. This qualitative change can arise due to the
creation, destruction or change in stability of the fixed
points.
At fixed points, ẋ = 0 =⇒ f(x, r) = 0 . The curve
f(x, r) = 0 drawn in the x-r plane is called the bifur-
cation diagram of the system.
For a particular type of bifurcation, the dynamics of
any system undergoing that bifurcation will be simi-
lar to certain prototypical forms, in a neighbourhood
of the fixed point. Such forms are called the normal
forms of that bifurcation.
Let us look into certain types of bifurcations.

3.2 Saddle-Node Bifurcation

In saddle-node bifurcation, as a parameter is varied,
two fixed points move towards each other, collide and
mutually annihilate.
The normal forms of saddle-node bifurcation are -
ẋ = r − x2 or ẋ = r + x2. Both the systems undergo a
saddle-node bifurcation at r = 0(as shown in fig(2)).

Figure 2: Saddle-node bifurcation in the system
ẋ = r + x2.[2]

Figure 3: Bifurcation Diagram[2]

3.3 Transcritical Bifurcation

In transcritical bifurcation, as a parameter is varied,
stability of a fixed point changes.
The normal form of transcritical bifurcation is - ẋ =
rx−x2. Note that x∗ = 0 is a fixed point ∀ r ∈ R, but
it is stable when r < 0 and unstable when r > 0 (as
shown in fig(4)).

Figure 4: Transcritical bifurcation in the system
ẋ = rx− x2. [2]

Figure 5: Bifurcation Diagram [2]
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3.4 Pitchfork Bifurcation

Pitchfork bifurcations are seen in systems having spa-
tial symmetry - in which, fixed points tend to appear
and disappear in symmetrical pairs, as a parameter is
varied. This will cause a transition of the system from
having one fixed point to three fixed points or vice-
versa.
Pitchfork bifurcation can be of two types -

3.4.1 Supercritical Pitchfork Bifurcation

Normal form : ẋ = rx− x3

x∗ = 0 is always a fixed point of the system, which
turns from stable to unstable at r = 0. Also, at r = 0,
two symmetrical stable fixed points emerge. There is a
single fixed point when r < 0, which increases to three
when r > 0.

Figure 6: Bifurcation Diagram [2]

3.4.2 Subcritical Pitchfork Bifurcation

Normal form : ẋ = rx+ x3

As in the previous case, x∗ = 0 is always a fixed point.
When r > 0, we have a single unstable fixed point, two
symmetrical unstable fixed points emerge at r = 0,
hence giving three fixed points when r < 0.

Figure 7: Bifurcation Diagram [2]

3.5 Imperfect Bifurcations and Catas-
trophe

Consider the system - ẋ = f(x, r, h) - where r and h
are two parameters. Suppose the system has left-right
symmetry when h = 0 and the symmetry is broken
when h ̸= 0, then h is called the imperfection pa-
rameter. This causes imperfections in the bifurcation
diagrams(as shown in fig(8).

Figure 8: Bifurcation diagrams drawn in the x-r
plane(for constant h) of the system ẋ = h+ rx−x3 [2]

For the system ẋ = h + rx − x3, if we plot the
fixed points x∗ above the r− h plane, we get the cusp
catastrophe surface, as shown in fig(9)

Figure 9: Cusp catastrophe surface [2]

As the parameters are varied, the state of the sys-
tem is carried along the edge of the upper surface, fol-
lowed by a discontinuous drop to the lower surface.
This motivates the use of word catastrophe, as this
could be catastrophic for the equilibrium of a bridge
or building or an insect population.

4 Linear Systems

We start our analysis of higher order systems by
analysing two-dimensional linear systems. The gen-
eral form of a two-dimensional linear system is given
below-
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ẋ = ax+ by

ẏ = cx+ dy

where a,b,c and d are parameters.

Define X =

(
x
y

)
and A =

(
a b
c d

)
, then -

Ẋ =

(
ẋ
ẏ

)
=

(
a b
c d

)(
x
y

)
=⇒ Ẋ = AX (3)

Equation 3 gives the general form of a 2-dimensional
linear system in a compact way.

Remark 1. Let X1(t) and X2(t) be any two solutions
of Ẋ = AX, then any linear combination of X1 and
X2 is also a solution. This is why the system is called
linear.

Remark 2. X∗ =

(
0
0

)
is a fixed point of any 2-

dimensional linear system, since X =

(
0
0

)
=⇒

Ẋ = AX =

(
0
0

)
, for any A.

4.1 Geometric Approach and Fixed
Points

A two-dimensional linear system represents a vector
field on a plane - at each point (x, y), a vector (ẋ, ẏ) is
assigned. To find the trajectory starting at (x0, y0), we
place a phase point at (x0, y0) and see how it is carried
along the flow, as given by the vector field.
Closed orbits : If a phase point returns back to its
initial point, then its trajectory is said to be a closed
orbit. Hence, closed orbits represent periodic solutions
of the system.
A fixed point is the point where (ẋ, ẏ) = (0, 0). Based
on their stability, there are different types of fixed
points -

• Attracting fixed point : A fixed point x∗ is
said to be attracting if ∃ δ > 0 such that

|x(0)− x∗| < δ =⇒ limt→∞ x(t) = x∗.

• Globally attracting fixed point : A fixed
point x∗ is said to be globally attracting if

limt→∞ x(t) = x∗ ,∀x(0) ∈ R

• Liapunov stable fixed points : A fixed point
x∗ is said to be Liapunov stable if ∀ ϵ > 0, ∃ δ > 0
such that -

|x(0)− x∗| < δ =⇒ |x(t)− x∗| < ϵ ,∀t ≥ 0.

• Neutrally stable fixed points : This type in-
cludes the fixed points which are Liapunov stable
but not attracting.

• Stable or Asymptotically stable fixed
points : This type includes the fixed points
which are both Liapunov stable and attracting.

• Unstable fixed points : This type includes the
fixed points which are neither Liapunov stable
nor attracting.

4.2 Classification of Fixed Points

Lemma. Let V be an eigenvector of the matrix A with
eigenvalue λ, then X(t) = eλtV is a solution to the sys-
tem Ẋ = AX.

Proof. X ′(t) = eλt(λV ) = eλt(AV ) = A(eλtV )
=⇒ X ′(t) = AX(t)

Hence, the solutions of any system X ′ = AX will
depend upon the eigenvalues and eigenvectors of A.
Hence, there can be several cases -

4.2.1 Real and distinct eigenvalues

Theorem. Consider the two-dimensional linear sys-
temX ′ = AX. Let V1 and V2 be eigenvectors of A with
eigenvalues λ1 and λ2 respectively such that λ1 ̸= λ2.
Then the general solution of the system is -

X(t) = c1e
λ1tV1 + c2e

λ2tV2 , c1, c2 ∈ R (4)

Depending upon the sign of the two eigenvalues,
fixed points can be of different types -

• Stable node : λ1 < 0 and λ2 < 0.

• Saddle : λ1 < 0 < λ2.

• Unstable node : λ1 > 0 and λ2 > 0.

Figure 10: Phase portraits for saddle, stable and un-
stable nodes. [1]
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4.2.2 Complex eigenvalues

Let the complex eigenvalues of A be α ± iβ. Depend-
ing upon sign of α, there can be different types of fixed
points :-

• Stable spiral : α < 0

• Center : α = 0

• Unstable spiral : α > 0

Figure 11: Phase portraits for center and spirals. [1]

4.2.3 Equal eigenvalues

• Case 1 (X ′ =

(
0 0
0 0

)
X) : X(t) = X0 is a solu-

tion to the system, ∀ X0 ∈ R2. Hence the phase
portrait will be a whole plane of fixed points.

• Case 2 (Non-zero equal eigenvalues with more
than one linearly independent eigenvector) : In
this case, the fixed point is called a star node.

• Case 2 (Non-zero equal eigenvalues with only one
linearly independent eigenvector) : In this case,
the fixed point is called a degenerate node.

Figure 12: Phase portraits for star and degenerate
nodes. [2]

4.3 Trace-Determinant Plane

Let τ and ∆ be the trace and determinant of matrix
A. Then the eigenvalues of A are given by -

λ1 =
τ +

√
τ2 − 4∆

2
; λ2 =

τ −
√
τ2 − 4∆

2
=⇒ τ = λ1 + λ2 ; ∆ = λ1λ2

• Case 1 (τ2 − 4∆ > 0) : λ1 and λ2 are real and
distinct.

– Saddle : ∆ < 0

– Stable node : ∆ > 0 and τ < 0

– Unstable node : ∆ > 0 and τ > 0

• Case 2 (τ2 − 4∆ = 0) : λ1 = λ2

– Star node : λ1 = λ2 = 0

– Degenerate node : λ1 = λ2 ̸= 0

• Case 3 (τ2 − 4∆ < 0) : λ1 and λ2 are complex.

– Center : τ = 0

– Stable spiral : τ < 0

– Unstable spiral : τ > 0

All of the above information can be summarised in the
following diagram[13] in the τ -∆ plane.

Figure 13: The τ -∆ plane [2]

5 Numerical Methods

In this section, we begin our study of non-linear dy-
namical systems by looking at a few numerical meth-
ods that we employ while solving such systems.
We will look at different methods for the numerical in-
tegration of the first-order system ẋ = f(x), and will
extend these methods to higher dimensions, by the end
of this section. The problem that we attempt to solve
is that - given the differential equation ẋ = f(x) and
the initial condition x(t0) = x0, we need a method to
approximate x(t).

5



5.1 Euler’s Method

Consider the differential equation -

dx

dt
= f(x)

In this method, we make the approximation -

dx

dt
≈ x(t+∆t)− x(t)

∆t

=⇒ f(x0) =
x(t0 +∆t)− x0

∆t
=⇒ x1 = x(t0 +∆t) = x0 + f(x0)∆t

We choose ∆t to be sufficiently small so that our ap-
proximation holds true and we iterate till the final time
using the update rule -

xn+1 = xn + f(xn)∆t (5)

The Euler’s method is first-order, since the error
E = |x(tn) − xn| is proportional to the stepsize ∆t
(E α ∆t).
A python script that works based on the above al-
gorithm is attached here - https://github.com/

Ashlin-V-Thomas/Dynamical-systems/blob/main/

Numerical_integration(Euler’s%20method).py.

5.2 Improved Euler’s Method

In order to improve the accuracy of Euler’s method,
we modify the update rule of iteration by finding the
derivative on both ends of the time interval and using
their average. For this, we find a trial value x̃n+1 ,
given by -

x̃n+1 = xn + f(xn)∆t

and the real value, xn+1 is found out using x̃n+1 using
-

xn+1 = xn +
1

2
[f(xn) + f(x̃n+1)]∆t (6)

This method is a second-order method since
(E α (∆t)2).
A python script that works based on the above
algorithm is attached here - https://github.

com/Ashlin-V-Thomas/Dynamical-systems/blob/

main/Numerical_integration(Improved%20Euler%

20method).py.

5.3 Runge - Kutta Method

It is a fourth-order method, in which we find four val-
ues -

k1 = f(xn)∆t

k2 = f(xn +
1

2
k1)∆t

k3 = f(xn +
1

2
k2)∆t

k4 = f(xn + k3)∆t

Now, xn+1 is found out using the four values -

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4) (7)

A python script that works based on the
above algorithm which solves graphs the solu-
tions is attached here - https://github.com/

Ashlin-V-Thomas/Dynamical-systems/blob/main/

Numerical_integration(Runge-Kutta%20method)

.py.

The above method can be extended to a two-
dimensional system Ẋ = F (X). The same set of
computations used above for solving first-order sys-
tems can be used here, except for the fact that
in this case - xn, k1, k2, k3, k4 ∈ R2. A python
script that works based on the above algorithm to
solve two-dimensional system and graph the tra-
jectory is attached here - https://github.com/

Ashlin-V-Thomas/Dynamical-systems/blob/main/

2-D%20Numerical%20integration.py.

6 Phase Plane Analysis

As we have seen in section 4.1, a second-order system
represents a vector field on the phase plane, where we
associate the vector given by (ẋ, ẏ) to each point (x, y).
Hence by flowing along the vector field, a phase point
traces out a trajectory since, the vector field gives the
tangent vector of the trajectory at every point. We
will use this idea to trace the trajectories of non-linear
systems in the phase plane.
To begin with, let us look at a few definitions -

• Nullclines : Nullclines are defined as curves
where ẋ = 0 (flow is vertical) or ẏ = 0 (flow is
horizontal). Plotting the nullclines in the phase
plane will be helpful in our analysis, as they par-
tition the phase plane into different regions where
ẋ and ẏ have various signs.

• Homoclinic orbits : Homoclinic orbits start
and end at the same fixed point. That is -

lim
t→ −∞

x(t) = x∗ = lim
t→∞

x(t)

6.1 Existence and Uniqueness Theo-
rem

Theorem. Consider the initial value problem Ẋ =
F (X) , X(0) = X0, where X ∈ Rn. Suppose that
F is continuous and all its partial derivatives ∂Fi

∂xj
,

where 1 ≤ i ≤ n and 1 ≤ j ≤ n, are continuous
∀ x ∈ D, where D ⊂ Rn is an open connected set.
Then, ∀ x0 ∈ D, the initial value problem has a solu-
tion x(t) for t ∈ (−τ, τ) and the solution is unique.
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Corollary. Consider the initial value problem Ẋ =
F (X) , X(0) = X0, where X ∈ Rn. Suppose that F
is continuous and all its partial derivatives ∂Fi

∂xj
, where

1 ≤ i ≤ n and 1 ≤ j ≤ n, are continuous ∀ x ∈ D,
where D ⊂ Rn is an open connected set. Then in D,
two different trajectories never intersect.

Proof. Suppose not. Then there will be two trajecto-
ries starting from the point of intersection. This is a
contradiction to the uniqueness part of theorem 6.1.
Hence, two trajectories can never intersect

6.2 Fixed points and Linearization

Consider the system -

ẋ = f(x, y)

ẏ = g(x, y)

Let (x∗, y∗) be a fixed point of the syatem ,i.e,
f(x∗, y∗) = 0 and g(x∗, y∗) = 0.

Let

(
u(t)
v(t)

)
=

(
x(t)− x∗

y(t)− y∗

)
be a small disturbance from

the fixed point.

u(t) = x(t)− x∗

=⇒ u̇ = ẋ

=⇒ u̇ = f(x, y) = f(x∗ + u, y∗ + v)

Now using Taylor series expansion, we obtain -

u̇ = f(x∗, y∗) + u

(
∂f

∂x

)
(x∗,y∗)

+ v

(
∂f

∂y

)
(x∗,y∗)

+

O(u2, v2, uv)

Since the disturbance is small, O(u2, v2, uv) can be ne-
glected and f(x∗, y∗) = 0. Hence -

u̇ ≈ u

(
∂f

∂x

)
(x∗,y∗)

+ v

(
∂f

∂y

)
(x∗,y∗)

Similarly,

v̇ ≈ u

(
∂g

∂x

)
(x∗,y∗)

+ v

(
∂g

∂y

)
(x∗,y∗)

Hence the disturbance

(
u(t)
v(t)

)
evolves according to

- (
u̇
v̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

(
u
v

)
(8)

The above equation gives the linearized sys-
tem around the fixed point. The matrix A =(

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

is called the Jacobian matrix at

the fixed point (x∗, y∗).

6.2.1 Validity of linearization

Our assumption that O(u2, v2, uv) can be neglected
holds good for saddles, nodes and spirals but not for
centers, stars, degenerate nodes or non-isolated fixed
points as they are altered by small non-linear terms.

6.2.2 New scheme of classification of fixed
points

Based on our above discussion, we can classify fixed
points, based on their stability, as follows -

• Robust cases : These include -

– Repellers (Sources) : Both eigenvalues have
positive real part.

– Attractors(Sinks) : Both eigenvalues have
negative real part.

– Saddles : One eigenvalue is positive and the
other is negative.

• Marginal cases : These include -

– Centers : Both eigenvalues are purely imag-
inary.

– Higher-order and non-isolated fixed points :
at least one eigenvalue is zero.

6.2.3 Hyperbolic fixed points

Definition. Let Ẋ = F (X) be an nth-order system
with a fixed point X∗. X∗ is said to be hyperbolic if
for all eigenvalues λi of the linearized system around
X∗, Re(λi) ̸= 0.

Theorem (Hartman-Grobman theorem). The local
phase portrait near a hyperbolic fixed point is topolog-
ically equivalent to the phase portrait of the linearized
system.

In the above theorem, ”topologically equivalent”
means that there exists a homeomorphism (a continu-
ous bijective function between two topological spaces
that has a continuous inverse) that maps one local
phase portrait onto other such that trajectories map
onto trajectories and the sense of time is preserved
- that is, one phase portrait is a distorted version of
the other. Therfore, hyperbolic fixed points are not
affected by small non-linear terms and linearization
around them holds good.

Definition (Structural Stability). A phase portrait
is said to be structurally stable if its topology cannot
be changed by an arbitrarily small perturbation to the
vector field.

7



6.3 Conservative Systems

Definition. Consider the nth-order system Ẋ =
F (X). Let E : Rn → R be a function such that -

1. E is continuous,

2. On every trajectory, E(X) is a constant, i.e,
∂E
∂t = 0 and

3. For all open set D ⊂ Rn, ∃ X1, X2 ∈ D such that
E(X1) ̸= E(X2).

Then E(X) is called a conserved quantity and the
system is called conservative.

Theorem. A conservative system cannot have any at-
tracting fixed points.

Proof. Suppose not. Let X∗ be an attracting fixed
point. Then all trajectories starting from a neighbour-
hood of X∗ will end up in X∗, as t → ∞. Hence, E(X)
will be a constant on all trajectories and will be equal
to E(X∗). Therefore, E(X) will be a constant func-
tion in that neighbourhood, but this contradicts the
fact that the system is conserved, as E(X) have to be
non-constant on all open sets.

Theorem (Nonlinear centers). Consider a second-
order conservative system Ẋ = F (X), where F is
continuously differentiable. Let E(X) be a conserved
quantity and X∗ be an isolated fixed point. If X∗ is
a local extremum of E, then all trajectories in a small
neighbourhood of X∗ are closed.

6.4 Reversible Systems

Definition. Consider the nth-order system Ẋ =
F (X). Let R : Rn → Rn be a function satisfying
R ◦ R(X) = X. If the system is invariant under the
change of variables t → −t and X → R(X), then the
system is said to be reversible.

Theorem (Nonlinear centers). Let Ẋ = F (X) be a
second-order, continuously differentiable system which

is reversible and has a fixed point X∗ =

(
0
0

)
. Suppose

linearization around X∗ gives rise to a center, then in a
small neighbourhood of X∗, all trajectories are closed
curves.

6.5 Index Theory

While linearization provides us the local information
about the phase portrait near a fixed point, index
theory provides global information about the phase
portrait.

6.5.1 Index of a closed curve

Definition. Let Ẋ = F (X) be a second-order contin-
uously differentiable system and C be a simple closed
curve ( doesn’t intersect itself) on the plane, that
doesn’t pass through any fixed points of the system.
Let ϕ be the angle made by the vector field with posi-
tive x-axis at each point C, i.e.,

ϕ = tan−1

(
ẏ

ẋ

)
Let [ϕ]C denote the net change in ϕ, as we complete
one counterclockwise rotation around C. Then the in-
dex of the closed curve C with respected to the vector
field F , denoted by IC , is defined as -

IC =
1

2π
[ϕ]C (9)

Hence, IC is the net number of counterclockwise
rotations made by the vector field during a counter-
clockwise traversal along the curve C.

6.5.2 Properties of Index

1. If C can be continuously deformed into C ′ with-
out passing through a fixed point, then IC = IC′ .

2. If C doesn’t enclose any fixed points, then IC =
0.

3. Index of a closed curve remains invariant under
the change of variables t → −t.

4. If C is a closed orbit, then IC = 1.

6.5.3 Index of a fixed point

Definition. Let X∗ be an isolated fixed point. The
index of X∗ is denoted by I and is defined as the index
of any closed curve that encloses X∗ and no other fixed
points.

Index of nodes, spirals, centers, stars and degener-
ate nodes is +1, whereas, it is −1 for a saddle point.

Theorem. If a closed curve C encloses n isolated-fixed
points X∗

i , 1 ≤ i ≤ n, then -

IC =

n∑
k=1

Ik

where Ik is the index of X∗
k .

Corollary. Any closed orbit in the phase plane must
enclose fixed points whose indices sum to +1.
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7 Population Growth Model -
Interacting Populations

7.1 Exponential and Logistic Growth
Models

Consider a species, whose population is given by the
function - N(t). If the resources are unlimited in its
habitat, then the population evolves according to the
exponential growth model -

Ṅ = rN (10)

where, r > 0 is the intrinsic rate of natural increase.

The above model is quite unrealistic as no popula-
tion has access to unlimited resources in its habitat. So,
the limited availability of resources sets an upper limit
to the population, causing the population to decrease if
it grows beyond that limit - that limit is called carry-
ing capacity(K) for that population in that habitat.
This gives rise to the logistic population growth model
given by -

Ṅ = rN

(
1− N

K

)
(11)

7.2 Population Interactions

Different populations living in an ecosystem will have
inter-specific interactions, which can can be benefi-
cial(+), detrimental(-) or neutral(◦) to the interacting
species. Based on the outcome of interaction, we can
classify population interactions as follows -

Classification of population interactions

Population Interaction Species A Species B

Mutualism + +

Commensalism + ◦
Predation + -

Parasitism + -

Amensalism - ◦
Competition - -

Table 1: Different population interactions and their
outcomes.

A population interaction is said to be a -

• Positive Interaction - if it is beneficial to the
species(+).

• Negative Interaction - if it is detrimental to
the species(-).

• Neutral Interaction - if it is neutral to the
species(◦).

7.3 Mathematical Model

The system, we will be dealing with, are two-
population systems, say N1(t) and N2(t) - which in-
teract with each other. We assume that each of the
populations will follow the logistic population growth
model in the absence of the other.
Therefore, when N2 = 0,

Ṅ1 = r1N1

(
1− N1

K1

)
But when N2 ̸= 0,

Ṅ1 = r1N1

(
1− N1

K1

)
+ I1(N1, N2)

where, I1(N1, N2) is the interaction term for N1 -
that is dependent upon the nature and degree of inter-
action between the two populations.

7.3.1 Neutral Interaction

When the interaction is neutral to a species, its pop-
ulation growth won’t be affected by the interaction.
Hence,

I1(N1, N2) = 0

7.3.2 Negative Interaction

In case of a negative interaction ,

• The interaction term will be proportional to both
N1 and N2 since the interaction will be more ex-
tensive if the populations are higher. Hence,

I1(N1, N2) α N1N2

• Also the interaction term will be negative since
an increase in interaction will cause negative ef-
fects on the population growth.

I1(N1, N2) < 0 ,∀N1, N2 ∈ [0,∞).

Incorporating all the above information, we arrive at -

I1(N1, N2) = −α1N1N2

where, α1 > 0 is a constant of proportionality called
the interaction parameter for N1.
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7.3.3 Positive Interaction

In case of a positive interaction ,

• As in the case of a negative interaction, the inter-
action term will be proportional to both N1 and
N2. Hence,

I1(N1, N2) α N1N2

• When N1 is small, the interaction term will cause
it to grow and will be positive. But this can’t be
the case for all values of N1. This is because
if it stays positive for very high values of N1,
it can cause the population to grow(depending
on the value of N2) even when N1 has exceeded
the habitat’s carrying capacity - as the inter-
action term can dominate over the preceding
term. In order to account for that, the inter-
action term will be controlled by the habitat’s
carrying capacity(K1).

Hence,

I1(N1, N2) = α1N1N2

(
1− N1

K1

)
where, α1 > 0 is a constant of proportionality called
the interaction parameter for N1.

Before delving into the detailed analysis of each
type of interaction, let us state and prove the following
proposition -

Proposition 1. Consider the second order system -

Ẋ = AX, where A is a real matrix of the form

(
a 0
d b

)
or

(
a d
0 b

)
, where a ̸= b. Then, the system has -

• Saddle: if ab < 0

• Unstable node: if ab > 0 and a+ b > 0

• Stable node: if ab > 0 and a+ b < 0

Proof. For the matrix A, trace(τ) = a + b and
determinant(∆) = ab.

τ2 − 4∆ = (a+ b)2 − 4ab = (a− b)2 > 0

Hence, the matrix has real and distinct eigenvalues.
Therefore, the system has a saddle(if ∆ = ab < 0),
unstable node( if ∆ = ab > 0 and τ = a + b > 0) and
stable node( if ∆ = ab > 0 and τ = a+ b < 0).

Now with the mathematical model, let us see how
populations evolve under different types of population
interactions.

7.4 Mutualism

In mutualism, the interaction is positive for both the
populations, hence, the system will be -

Ṅ1 = (r1 + α1N2)N1

(
1− N1

K1

)
Ṅ2 = (r2 + α2N1)N2

(
1− N2

K2

)
We can see that the system has four fixed points - (0, 0),
(K1, 0), (0,K2) and (K1,K2).
The Jacobian matrix of the system is given by -(r1 + α1N2)

(
1− 2N1

K1

)
α1N1

(
1− N!

K1

)
α2N2

(
1− N2

K2

)
(r2 + α2N1)

(
1− 2N2

K2

)
Let us look at the nature of fixed points -

Nature of fixed points

Fixed
points

Linearized system
around fixed point

Nature of
fixed point

(0, 0)

(
r1 0
0 r2

)
Unstable
node

(K1, 0)

(
−r1 0
0 r2 + α2K1

)
Saddle

(0,K2)

(
r1 + α1K2 0

0 −r2

)
Saddle

(K1,K2)
(−(r1+α1K2) 0

0 −(r2+α2K1)

)
Stable node

The phase portrait for the system is shown in
fig(14).

Figure 14: Phase portrait for population system with
mutualism interaction (r1 = 2, r2 = 3, a1 = 0.1, a2 =
0.18,K1 = 100,K2 = 150).
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Note that any trajectory that starts from any point,
that doesn’t lie on the axes reaches the point (K1,K2),
since it is a stable node.
Any trajectory starting on N1-axis - i.e., in the absence
of N2 -, ultimately reaches (K1, 0) and any trajectory
on the N2-axis - i.e., in the absence of N1 - reaches
(0,K2).
Origin (Both the populations are zero) is itself a fixed
point.

7.5 Commensalism

In commensalism, the interaction is positive for one of
the populations and neutral for the other. Hence, the
system will be -

Ṅ1 = (r1 + α1N2)N1

(
1− N1

K1

)
Ṅ2 = r2N2

(
1− N2

K2

)
We see that, the growth of the first population is af-
fected by the second population while, the second pop-
ulation follows the logistic growth model.
As in the above case, the system has four fixed points
- (0, 0), (K1, 0), (0,K2) and (K1,K2).
The Jacobian matrix of the system is given by -(r1 + α1N2)

(
1− 2N1

K1

)
α1N1

(
1− N!

K1

)
0 r2

(
1− 2N2

K2

) 
Let us look at the nature of different fixed points of

the system -

Nature of fixed points

Fixed
points

Linearized system
around fixed point

Nature of
fixed point

(0, 0)

(
r1 0
0 r2

)
Unstable
node

(K1, 0)

(
−r1 0
0 r2 + α2K1

)
Saddle

(0,K2)

(
r1 + α1K2 0

0 −r2

)
Saddle

(K1,K2)

(
−(r1 + α1K2) 0

0 −r2

)
Stable node

We see that both the cases of mutualism and com-
mensalism share the same fixed points, with the same
stability, hence, their phase portraits are also similar.

Figure 15: Phase portrait for population system
with commensalism interaction(r1 = 2, r2 = 3, a1 =
0.1, a2 = 0.18,K1 = 100,K2 = 150).

Even though the phase portraits look similar, one
should admire the fact that - in commensalism, the
growth of second population is not affected by the first
but in mutualism, the growth of second population is
accelerated by an increase in the first population. But
in both cases, the populations eventually reach their
carrying capacities.

7.6 Amensalism

In amensalism, the interaction is negative for one of
the populations and neutral for the other. Hence, the
system will be -

Ṅ1 = r1N1

(
1− N1

K1

)
− α1N1N2

Ṅ2 = r2N2

(
1− N2

K2

)
On solving the simultaneous equations - Ṅ1 = 0 and
Ṅ2 = 0 - we find that the system has -

• 3 fixed points (when r1 ≤ α1K2) - (0, 0), (K1, 0)
and (0,K2).

• 4 fixed points (when r1 > α1K2) - (0, 0), (K1, 0),

(0,K2) and
(

(r1−α1K2)K1

r1
,K2

)
.

The Jacobian matrix of the system is -r1

(
1− 2N1

K1

)
− α1N2 −α1N1

0 r2

(
1− 2N2

K2

)
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At (0, 0), the linearized system is

(
r1 0
0 r2

)
and hence

(0, 0) is always an unstable node.
Similarly, the linearized system around (K1, 0) is(
−r1 −α1K1

0 r2

)
. By proposition 1, the fixed point

is a saddle, since −r1r2 < 0.

Case 1 : r1 < α1K2

Linearized system around (0,K2) is

(
r1 − α1K2 0

0 −r2

)
and since r1−α1K2 < 0 and−r2 < 0, (0,K2) is a stable
node.

Figure 16: Phase portrait for population system with
amensalism interaction with r1 < α1K2 (r1 = 2, r2 =
3, a1 = 0.1, a2 = 0.18,K1 = 100,K2 = 120).

We see that most of the trajectories converge to the
stable node (0, 120) ,i.e, N1 goes extinct and N2 attains
carrying capacity.

Case 2 : r1 = α1K2

The linearized system around (0,K2) is

(
0 0
0 −r2

)
(The fixed point is not hyperbolic and linearization may
not be valid). That is, Ṅ1 = 0 and Ṅ2 = −r2N2. On
solving the above system, we get -

N1(t) = N1(0) ∀t ≥ 0

N2(t) = N2(0)e
−r2t

We compute the phase portrait numerically - shown in
fig(17).

Figure 17: Phase portrait for population system with
amensalism interaction with r1 = α1K2 (r1 = 2, r2 =
3, a1 = 1

60 , a2 = 0.18,K1 = 100,K2 = 120).

Hence we see that the nature of phase portrait
around (0,K2) is similar to that of the linearized sys-
tem.

Case 3 : r1 > α1K2

Linearized system around (0,K2) is

(
r1 − α1K2 0

0 −r2

)
and since r1−α1K2 > 0 and −r2 < 0, (0,K2) is a sad-
dle.

In this case, there is a fourth fixed point -(
(r1−α1K2)K1

r1
,K2

)
and the linearized system around

it is

(
−r1 + α1K2 −α1K1

r1
(r1 − α1K2)

0 −r2

)
.

By proposition 1, the fixed point is a stable node, since
r2(r1 − α1K2) > 0 and α1K − 2− r1 − r2 < 0.

Figure 18: Phase portrait for population system with
amensalism interaction with r1 = α1K2 (r1 = 2, r2 =
3, a1 = 0.005, a2 = 0.18,K1 = 100,K2 = 120).
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7.7 Predation / Parasitism

In both predation and parasitism, the interaction is
positive for one of the populations(predator/parasite)
and negative for the other(prey/host). Hence, the
mathematical model for both the interactions would
be the same but depending upon the nature of interac-
tion, the parameters will decide how the system evolves
and hence, the parameters will draw margins between
predation and parasitism.
The system will be -

Ṅ1 = (r1 + α1N2)N1

(
1− N1

K1

)
Ṅ2 = r2N2

(
1− N2

K2

)
− α2N1N2

On solving the simultaneous equations - Ṅ1 = 0
and Ṅ2 = 0 - we find that the system has -

• 3 fixed points (when r2 ≤ α2K1) - (0, 0), (K1, 0)
and (0,K2).

• 4 fixed points (when r2 > α2K1) - (0, 0), (K1, 0),

(0,K2) and
(
K1,

K2(r2−α2K1)
r2

)
.

The Jacobian matrix of the system is -

(r1 + α1N2)
(
1− 2N1

K1

)
α1N1

(
1− N1

K1

)
−α2N2 r2

(
1− 2N2

K2

)
− α2N1



At (0, 0), the linearized system is

(
r1 0
0 r2

)
and

hence (0, 0) is always an unstable node.

Similarly, the linearized system around (0,K2) is(
r1 + α1K1 0
−α2K2 −r2

)
. By proposition 1, the fixed point

is a saddle, since −r2(r1 + α1K1) < 0.

Case 1 : r2 < α2K1

Linearized system around (K1, 0) is

(
−r1 0
0 r2 − α2K1

)
and since−r1 < 0 and r2−α2K1 < 0, (K1, 0) is a stable
node.

Figure 19: Phase portrait for population system with
predation or parasitism interaction with r2 < α2K1

(r1 = 3, r2 = 2, a1 = 0.18, a2 = 0.1,K1 = 120,K2 =
100).

Case 2 : r2 = α2K1

The linearized system around (K1, 0) is

(
−r1 0
0 0

)
(The fixed point is not hyperbolic and linearization may
not be valid).
On solving the above system, we get -

N1(t) = N1(0)e
−r1t

N2(t) = N2(0) ∀t ≥ 0

We compute the phase portrait numerically - shown in
fig(17).

Figure 20: Phase portrait for population system with
predation or parasitism interaction with r2 = α2K1

(r1 = 3, r2 = 2, a1 = 0.18, a2 = 1
60 ,K1 = 120,K2 =

100).

Hence we see that the nature of phase portrait
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around (K1, 0) is similar to that of the linearized sys-
tem.

Case 3 : r2 > α2K1

Linearized system around (K1, 0) is

(
−r1 0
0 r2 − α2K1

)
and since r2−α2K1 > 0 and −r1 < 0, (K1, 0) is a sad-
dle.

In this case, there is a fourth fixed point -(
K1,

K2(r2−α2K1)
r2

)
and the linearized system around

it is -(
−
(
r1 +

α1K2

r2
(r2 − α2K1)

)
0

−α2K2

r2
(r2 − α2K1) α2K1 − r2

)
.
By proposition 1, the fixed point is a stable node, since
the determinant of the linearized system is positive and
its trace is negative.

Figure 21: Phase portrait for population system with
predation or parasitism interaction with r2 < α2K1

(r1 = 3, r2 = 2, a1 = 0.18, a2 = 0.005,K1 = 120,K2 =
100).

7.8 Competition

In competition, the interaction is negative for both the
populations, hence, the system will be -

Ṅ1 = r1N1

(
1− N1

K1

)
− α1N1N2

Ṅ2 = r2N2

(
1− N2

K2

)
− α2N1N2

On solving the simultaneous equations - Ṅ1 = 0
and Ṅ2 = 0 - we find that the system has -

• 4 fixed points (when r2 < α2K1 and r1 < α1K2

or r2 > α2K1 and r1 > α1K2) - (0, 0), (K1, 0),

(0,K2) and
(

r2K1(α1K2−r1)
α1α2K1K2−r1,r2

, r1K2(α2K1−r2)
α1α2K1K2−r1,r2

)
.

• 3 fixed points (otherwise) - (0, 0), (K1, 0) and
(0,K2).

The Jacobian matrix of the system is -

r1

(
1− 2N1

K1

)
− α1N2 −α1N1

−α2N2 r2

(
1− 2N2

K2

)
− α2N1



At (0, 0), the linearized system is

(
r1 0
0 r2

)
and

hence (0, 0) is always an unstable node.

Linearized system around (K1, 0) is

(
−r1 −α1K1

0 r2 − α2K1

)
.

We have analysed a similar system in 7.7 using propo-
sition 1 and had concluded that - (K1, 0) is a saddle if
r2 − α2K1 > 0 and stable node if r2 − α2K1 < 0 and
results in an exponentially decaying N1 and constant
N2(around (K1, 0)) if r2 − α2K1 = 0.

Linearized system around (0,K2) is

(
r1 − α1K2 0
−α2K2 −r2

)
.

We have analysed a similar system in 7.6 using propo-
sition 1 and had concluded that - (0,K2) is a saddle if
r1 − α1K2 > 0 and stable node if r1 − α1K2 < 0 and
results in an exponentially decaying N2 and constant
N1(around (0,K2)) if r1 − α1K2 = 0.

If r2 < α2K1 and r1 < α1K2 or r2 > α2K1 ,
r1 > α1K2, we have a fourth fixed point (N∗

1 , N
∗
2 ),

whereN∗
1 = r2K1(α1K2−r1)

α1α2K1K2−r1,r2
andN∗

2 = r1K2(α2K1−r2)
α1α2K1K2−r1,r2

.
Linearization around it will give us the system -

A =

(
− r1N

∗
1

K1
−α1N

∗
1

−α2N
∗
2 − r2N

∗
2

K2

)

Let ∆ = det(A) and τ = trace(A).

∆ =
r1N

∗
1 r2N

∗
2

K1K2
− α1α2N

∗
1N2∗

∆ =
N∗

1N2∗
K1K2

(r1r2 − α1α2K1K2)

Case 1: r2 < α2K1 and r1 < α1K2

In this case, (r1r2−α1α2K1K2) < 0 and hence ∆ < 0.

=⇒ τ2 − 4∆ > 0

So, the system has real and distinct eigenvalues and
∆ < 0 and hence the fixed point is a saddle.
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Case 2: r2 > α2K1 and r1 > α1K2

In this case, (r1r2−α1α2K1K2) > 0 and hence ∆ > 0.

τ2 − 4∆ =

(
r1N1

K1
+

r2N2

K2

)2

− 4r1r2N
∗
1N

∗
2

K1K2

+4α1α2N
∗
1N

∗
2

=⇒ τ2 − 4∆ =

(
r1N1

K1
− r2N2

K2

)2

+ 4α1α2N
∗
1N2∗ > 0

Hence, the system has real and distinct eigenvalues.

τ = −
(
r1N1

K1
+

r2N2

K2

)
< 0

Since τ < 0 and ∆ > 0, the fixed point is a stable
node.

We have included a few phase portraits for compet-
ing two-population systems, each with a different set
of parameters, obtained from numerical methods and
we can find that those are in agreement with our above
analysis.

Figure 22: Phase portrait for population system with
competition interaction with (r1 = 3, r2 = 1, a1 =
0.02, a2 = 0.01,K1 = 150,K2 = 200). Here, r2 <
α2K1 and r1 < α1K2.

In the above phase portrait, we see that either one
of the two populations go extinct as time passes on
and the other one reaches its carrying capacity and we
have a saddle in the phase portrait. The fate of the
system,i.e., which population will go extinct depends
on the initial condition.

Figure 23: Phase portrait for population system with
competition interaction with (r1 = 3, r2 = 2, a1 =
0.02, a2 = 0.01,K1 = 150,K2 = 200). Here, r2 >
α2K1 and r1 < α1K2.

The above phase portrait has a saddle at (150, 0)
and a stable node at (0, 200). Also, we see that for
most trajectories - N1 gets extinct and N2 reaches its
carrying capacity K2 = 200.

Figure 24: Phase portrait for population system with
competition interaction with (r1 = 5, r2 = 1, a1 =
0.02, a2 = 0.01,K1 = 150,K2 = 200). Here, r2 <
α2K1 and r1 > α1K2.

The above phase portrait has a saddle at (0, 200)
and a stable node at (150, 0). Also, we see that for
most trajectories - N2 gets extinct and N1 reaches its
carrying capacity K1 = 150.
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Figure 25: Phase portrait for population system with
competition interaction with (r1 = 5, r2 = 2, a1 =
0.02, a2 = 0.01,K1 = 150,K2 = 200). Here, r2 >
α2K1 and r1 > α1K2.

We see that the system has a stable node at
(75, 125) and saddles at (0, 200) and (150, 0). There-
fore, most trajectories reaches the fixed point (75, 125),
without any of the populations going extinct.

We see that in figures 22, 23 and 24, as the sys-
tem attains equilibrium, one of the populations go ex-

tinct. This is in agreement with Gause’s Competitive
Exclusion Principle - which states that two closely re-
lated species competing for the same resources cannot
co-exist indefinitely and the competitively inferior one
will be eliminated eventually.

But latest studies have shown that there are com-
peting species which promote coexistence rather than
exclusion and they have evolved methods for resource
partitioning. We see that the model explains this phe-
nomena as shown in fig(25) where r2 > α2K1 and
r1 > α1K2.

We have used a python script to simulate
the growth of population systems and graph it.
The code is attached here - https://github.com/

Ashlin-V-Thomas/Dynamical-systems/blob/main/

Population%20growth%20simulator.py

8 Conclusion

In this report, we have discussed about the nonlinear
systems around us, different graphical and numerical
methods to analyze them and the different types of bi-
furcations that can happen in such systems. We have
also taken a look at linear systems and have seen un-
der what conditions, we can approximate a nonlinear
system to its linearized form. Finally, we concluded by
analysing interacting 2-population systems where we
made use of the knowledge that we had acquired so
far.
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