
Computational Physics (P346) Project Report

Google Page Rank Algorithm

Submitted by

Ashlin V Thomas
3rd year Int. MSc Student

School of Physical Sciences
National Institute of Science Education and Research,

Tehsildar Office, Khurda
Pipli, Near, Jatni, Odisha 752050

Submitted to
Dr. Colin Benjamin

Associate Professor

School of Physical Sciences
National Institute of Science Education and Research,

Tehsildar Office, Khurda
Pipli, Near, Jatni, Odisha 752050

Acknowledgements

I wish to express my profound gratitude to our course instructor Dr.
Colin Benjamin and the School of Physical Sciences for providing me
with an opportunity to undertake this project. Support and guidance
provided by the instructor during the coursework and project was critical
towards the successful completion of this project. Also, I would like to
extend gratitude to my fellow classmates for the support they offered in
the process of carrying out this project.

1

Abstract

The Google PageRank algorithm is a cornerstone of modern
web search engines, providing a mechanism to rank web pages
based on their link structure. This project explores the mathe-
matical foundation of the algorithm, modeling the internet as a
directed graph and employing concepts such as probability vec-
tors and stochastic matrices. An iterative scheme is utilized to
compute the PageRank vector, representing the steady-state dis-
tribution of web page ranks. The computational challenges of
convergence and the scalability of the algorithm are addressed.
A modification, the Random Surfer Algorithm, is also discussed,
which simulates a user randomly clicking links and resolves is-
sues like dead ends in the hyperlink matrix. Implementation re-
sults using Python demonstrate the evolution and convergence of
page ranks. The theoretical underpinnings, including the Perron-
Frobenius theorem and eigenvector analysis, are validated through
numerical experiments, showcasing the robustness and adaptabil-
ity of the algorithm in handling complex web networks.

2

Contents
1 Overview 1

2 Introduction 1

3 Mathematical Framework 1
3.1 Internet as a Directed Graph . 2
3.2 Probability Vectors and Stochastic Matrices . 2
3.3 Hyperlink Matrix . 2
3.4 The Role of Graph Theory in PageRank . 3
3.5 Foundational lemmas . 3

4 The PageRank Algorithm 5
4.1 PageRank Vector . 5
4.2 Iterative Scheme for PageRank . 5
4.3 Alternate Formulation: Direct Eigenvector Computation . 6
4.4 Python Implementation of the PageRank Algorithm . 7

4.4.1 Iterative Scheme . 7
4.4.2 Direct Eigenvector Computation . 7

4.5 Operation count analysis . 8
4.5.1 Iterative scheme . 8
4.5.2 Direct eigenvector computation . 9

4.6 Random Surfer Algorithm . 9
4.6.1 Algorithm Description . 9
4.6.2 Python Implementation . 9

5 Solutions to Exercise Problems 10

6 Conclusion 15

3

1 Overview
The PageRank algorithm, developed by Google’s co-founders Larry Page and Sergey Brin, revolutionized web
search by ranking pages based on their importance. This report provides a comprehensive analysis of the
PageRank algorithm, its mathematical foundation, and its implementation challenges. We begin by discussing
the problem of ranking web pages and the need for a link-based algorithm. We then delve into the mathematical
framework, representing the internet as a directed graph and defining key concepts such as probability vectors
and stochastic matrices. The PageRank algorithm’s iterative scheme and convergence properties are explored,
highlighting the algorithm’s efficiency in ranking web pages. We also present an alternate formulation using
direct eigenvector computation for faster convergence. The Random Surfer Algorithm, a variant of PageRank,
is discussed to address dead-end pages and dangling nodes. Python implementations of the PageRank algorithm
and the Random Surfer Algorithm are provided, along with solutions to exercise problems. The report concludes
with an analysis of the operation count for both algorithms and their impact on search engine efficiency. By
elucidating the theoretical underpinnings and practical applications of the PageRank algorithm, this report
offers valuable insights into the algorithm’s role in organizing the vast information available on the internet.

2 Introduction
The internet comprises billions of interconnected web pages, making it challenging to determine the most relevant
results for a given search query. Traditional keyword-matching methods often fail to capture the importance
and context of web pages. To address this, Google developed the PageRank algorithm, which ranks web pages
based on their link structure. Below, we outline the key aspects of the problem and the algorithm’s approach:

• The Problem:

– The internet’s vast size and complexity make it difficult to identify relevant search results.
– Keyword-matching methods can lead to suboptimal rankings by ignoring web page interconnectivity.

• How Google Search Works:

1. A user submits a search query in natural language.
2. The Query Module translates the input into machine-readable language.
3. The Ranking Module determines the relevance and order of web pages.

• The PageRank Algorithm:

– Developed by Sergey Brin and Larry Page, it evaluates:
∗ Quantity of links: The number of hyperlinks pointing to a page.
∗ Quality of links: Links from important pages carry more weight.

– Models the internet as a directed graph, where:
∗ Vertices represent web pages.
∗ Edges represent hyperlinks between pages.

• Challenges in Implementation:

– Dead-end pages: Pages with no outgoing links disrupt the stochastic nature of the hyperlink
matrix.

– Convergence: Iterative computation of page ranks is computationally intensive for large networks.

This report delves into the PageRank algorithm’s underlying mathematics, its implementation challenges,
and its impact on search engine efficiency. By analyzing the algorithm’s structure and performance, we demon-
strate its effectiveness in ranking web pages and organizing the vast information available on the internet.

3 Mathematical Framework
To understand and implement the PageRank algorithm, it is essential to mathematically represent the structure
of the internet. This section introduces the conceptual tools and challenges involved in modeling the internet
for PageRank calculations.

1

3.1 Internet as a Directed Graph
The internet can be represented as a directed graph G = (V, E), where:

• V is the set of vertices, representing web pages.

• E is the set of directed edges, representing hyperlinks between the pages.

In this representation, a directed edge (Pj → Pi) indicates that page Pj contains a hyperlink to page Pi.
This structure not only captures the interconnected nature of web pages but also provides a mathematical
framework for analyzing their relationships.

Graphs can be classified as directed or undirected. For the internet:

• The graph is directed, as hyperlinks have directionality (from one page to another).

• The presence of directed edges allows the application of algorithms that exploit these asymmetrical con-
nections, such as PageRank.

3.2 Probability Vectors and Stochastic Matrices
The ranking process of web pages requires tools from linear algebra, particularly probability vectors and stochas-
tic matrices:

• A Probability Vector p = (p1 p2 · · · pn)T ∈ Rn describes the probability distribution over n pages. Here:

pi ≥ 0 and
n∑

i=1
pi = 1.

This ensures that probabilities are non-negative and normalized.

• A Stochastic Matrix S is a square matrix where each column sums to 1. It is defined as:

S = [sij], where sij ≥ 0 and
n∑

i=1
sij = 1.

Stochastic matrices describe transitions in systems with probabilities, making them ideal for modeling
random surfing behavior.

3.3 Hyperlink Matrix
The connectivity of web pages is encoded in a Hyperlink Matrix H. For n pages, H is an n × n matrix,
where each entry Hij is defined as:

Hij =
{

1
|Pj | , if there is a link from Pj to Pi,

0, otherwise.

Here, |Pj | is the number of outgoing links from page Pj . This formulation ensures that the rows represent the
probability of transitioning between pages based on hyperlinks.

Figure 1: A network of webpages and the corresponding hyperlink matrix.

2

3.4 The Role of Graph Theory in PageRank
Graph theory plays a pivotal role in PageRank:

• The in-degree of a page represents the number of links pointing to it, contributing to its rank.

• The out-degree affects the distribution of a page’s importance to others.

• Graph traversal techniques are leveraged to simulate user behavior (random surfing).

3.5 Foundational lemmas
The PageRank algorithm is based on the following foundational lemmas:

Lemma 1

The hyperlink matrix corresponding to a a network of webpages, where each page has at least one
outlink, is stochastic.

Proof: Let H be an arbitarty hyperlink matrix. Then, for each column j, the sum of the entries is given
by:

n∑
i=1

Hij =
n∑

i=1

1
|Pj |

γij

where

γij =
{

1 if there is a link from Pj to Pi,

0 otherwise.

Since each page has at least one outlink, γij = 1 for at least one i. Therefore,

n∑
i=1

Hij = |Pj | · 1
|Pj |

= 1

Since γij is non-zero for exactly |Pj | values of i, by the definition of |Pj |. Therefore, H is a stochastic matrix.
Hence, the proof. ■

Lemma 2 (Perron Frobenius Theorem)

If A is a stochastic n × n matrix, then:

• λ1 = 1 is an eigenvalue of A.

• Any other eigenvalue λn satisfies : 0 ≤ |λn| < 1.

• A will have n linearly independent eigenvectors.

Proof
Claim: Let A be a square matrix, then λ is an eigenvalue of A if and only if λ is an eigenvalue of AT .
Proof of Claim: Let v be an eigenvector of A corresponding to λ. Then,

Av = λv =⇒ vT AT = λvT =⇒ vT AT v = λvT v =⇒ (AT v)T v = λvT v

Hence, AT v = λv, which implies that λ is an eigenvalue of AT corresponding to eigenvector v.
The reverse implication follows from the fact that A = (AT)T . Hence, the claim.

3

Let M be an arbitary n × n stochastic matrix and let 1 = (1 1 · · · 1)T ∈ Rn. Then, we can evaluate the
following product using the fact that M is stochastic:

MT 1 =

∑n

j=1 M1j∑n
j=1 M2j

...∑n
j=1 Mnj

 =

1
1
...
1

 = 1 = 1 · 1

Hence, 1 is an eigenvalue of MT , then, it follows from the claim that 1 is an eigenvalue of M .

Let λn be an eigenvalue of M . Then, λn is an eigenvalue of MT and let the corresponding eigenvector be
v = (v1 v2 · · · vn)T .

[MT v]i = M1iv1 + M2iv2 + · · · + Mnivn = λnvi

=⇒ |λnvi| = |M1iv1 + M2iv2 + · · · + Mnivn| ≤ |M1iv1| + |M2iv2| + · · · + |Mnivn|

Choose 1 ≤ k ≤ n such that |vk| = max1≤i≤n |vi|. Then, imposing i = k in the above inequality, we get:

|λn||vk| ≤ M1k|v1| + M2k|v2| + · · · + Mnk|vn|
=⇒ |λn||vk| ≤ M1k|vk| + M2k|vk| + · · · + Mnk|vk| = (M1k + M2k + · · · + Mnk)|vk| = |vk|

=⇒ |λn| ≤ 1

Hence, 0 ≤ |λn| ≤ 1.

From the above result, it follows that all non-dominant eigenvalues of M lie within the unit circle in the
argand plane. If M is irreducible, which follows from its column stochastic nature, then it follows that all
the non-dominant eigenvalues are distinct. Since the eigenspaces corresponding to distinct eigenvalues have
a trivial intersection, it follows that we can find n linearly independent eigenvectors, from the basis of each
of these eigenspaces. Since, Rn is n-dimensional, it follows that the eigenvectors of M form a basis for Rn.
Therefore, M has n linearly independent eigenvectors.
Hence, the proof. ■

Lemma 3

Let A be an n × n matrix with n linearly independent eigenvectors v1, v2, . . . , vn and associated eigen-
values λ1, λ2, . . . , λn. Then for any initial vector x ∈ Rn, we can express Akx as:

Akx = c1λk
1v1 + c2λk

2v2 + c3λk
3v3 + · · · + cnλk

nvn

where c1, c2, . . . , cn are constants found by expressing x as a linear combination of the eigenvectors.
Note: We can assume the eigenvalues are ordered such that |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

Proof: Let x be an arbitrary vector in Rn. Since the eigenvectors v1, v2, . . . , vn are linearly independent,
they form an ordered basis of Rn. Therefore, we can express x as a linear combination of the eigenvectors:

x = c1v1 + c2v2 + c3v3 + · · · + cnvn

where c1, c2, . . . , cn are constants.
Now, we shall use the principle of mathematical induction to prove the result.
Base Case: For k = 1, we have:

Ax = c1Av1 + c2Av2 + c3Av3 + · · · + cnAvn = c1λ1v1 + c2λ2v2 + c3λ3v3 + · · · + cnλnvn

Hence, the result holds for k = 1.
Inductive Hypothesis: Assume that the result holds for k = m. That is, we have:

Amx = c1λm
1 v1 + c2λm

2 v2 + c3λm
3 v3 + · · · + cnλm

n vn

4

Inductive Step: We shall prove that the result holds for k = m + 1. We have:

Am+1x = A(Amx)
= A(c1λm

1 v1 + c2λm
2 v2 + c3λm

3 v3 + · · · + cnλm
n vn)

= c1λm+1
1 v1 + c2λm+1

2 v2 + c3λm+1
3 v3 + · · · + cnλm+1

n vn

Hence, the result holds for k = m + 1.
Therefore, by the principle of mathematical induction, the result holds for all k ∈ N.
Hence, the proof. ■

4 The PageRank Algorithm
The Google PageRank algorithm is designed to rank web pages by evaluating their importance through their link
structure. This section describes the algorithm in detail, including its iterative scheme, theoretical foundation,
and computational considerations.

4.1 PageRank Vector
The PageRank vector x assigns a numerical importance to each web page. Mathematically, the rank of a page
Pi can be recursively defined as:

r(Pi) =
∑

Q∈Bi

r(Q)
|Q|

,

where:

• Bi is the set of pages linking to Pi.

• |Q| is the number of outgoing links from page Q.

This formula reflects the idea that a page’s importance is derived from the ranks of the pages linking to it,
distributed proportionally to their out-degrees.

4.2 Iterative Scheme for PageRank
The core of the PageRank algorithm lies in an iterative computation process to determine the rank of each web
page. The steps are as follows:

1. Initialization: All page ranks are initialized to an equal value:

x0 = 1
N

1,

where N is the total number of web pages, and 1 is a vector of ones. This ensures that the initial rank
distribution is uniform.

2. Iteration: At each step, the page rank vector is updated using the equation:

xn+1 = Hxn,

where H is the hyperlink matrix. Each iteration represents a ”random surfer” transitioning between pages
based on their hyperlinks.

3. Convergence: The iterations continue until the rank vector x reaches a steady state, where:

∥xn+1 − xn∥ < ϵ,

with ϵ being a small tolerance value.

This description of the page rank algorithm arises several questions:

5

• What is the theoretical foundation for the convergence of the PageRank algorithm?

• Can we optimize the iterative scheme for faster convergence?

• What are the computational challenges in implementing PageRank for large networks?

• How does the algorithm handle dead-end pages?

We will address these questions in the subsequent sections.

4.3 Alternate Formulation: Direct Eigenvector Computation
We begin the discussion of convergence by stating a very important theorem that provides the theoretical
foundation for the convergence of the PageRank algorithm.

Theorem 1

If the hyperlink matrix H of certain network of pages is stochastic with v1 = (v1,1, v1,2, · · · , v1,n)T being
its dominant right eigenvector. Then the iterative scheme, previously defined, converges to -

lim
k→∞

Hkx0 =
(

1∑n
i=1 v1,i

)
v1 (1)

Proof: Let H be a stochastic matrix with eigenvalues λ1 = 1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| and the
corresponding eigenvectors v1, v2, · · · , vn. Since H is stochastic, it follows from Lemma 2 that all the eigenvectors
are linearly independent. Therefore, we can express the inital pagerank vector x0 as a linear combination of the
eigenvectors of H:

x0 = c1v1 + c2v2 + · · · + cnvn

After k iterations, we can express xk in the following form using Lemma 3:

xk = Hkx0 = c1λk
1v1 + c2λk

2v2 + · · · + cnλk
nvn

=⇒ xk = c1v1 + c2λk
2v2 + · · · + cnλk

nvn

Since |λj | < 1 for j ≥ 2, it follows that limk→∞ λk
j = 0 for j ≥ 2. Therefore, we have:

lim
k→∞

xk = c1v1

Claim: Let xk be the pagerank vector after k iterations. Then, the sum of the entries of xk is 1.
Proof of Claim: We will use the principle of mathematical induction to prove the claim.
Base Case: For k = 0, we have the inital pagerank vector x0 = 1

N (1 1 · · · 1)T and the sum of the entries is
N 1

N = 1.
Inductive Hypothesis: Assume that the sum of the entries of xm is 1. That is,

n∑
i=1

xm,i = 1

Inductive Step: We shall prove that the sum of the entries of xm+1 is 1. We have:

n∑
i=1

xm+1,i =
n∑

i=1
(Hxm)i =

n∑
i=1

 n∑
j=1

Hijxm,j

 =
n∑

j=1

(
n∑

i=1
Hij

)
xm,j

Since H is stochastic, it follows that
∑n

i=1 Hij = 1 for all j. Therefore, we have:

n∑
i=1

xm+1,i =
n∑

j=1
xm,j = 1

6

Hence, the sum of the entries of xm+1 is 1.
Therefore, by the principle of mathematical induction, the sum of the entries of xk is 1 for all k ∈ N.

Since the sum of the entries of xk is 1 for all k ∈ N and limk→∞ xk = c1v1, it follows that sum of the entries
of c1v1 is 1. Therefore, c1 = (

∑n
i=1 v1,i)−1. Hence, we have:

lim
k→∞

xk =
(

1∑n
i=1 v1,i

)
v1

Hence, the proof. ■

The above theorem provides a theoretical foundation for the convergence of the PageRank algorithm. Apart
from this, the theorem also provides a direct method to compute the steady-state rank distribution of the
network of webpages. This can be acheived by performing Gaussian elimination on the matrix H − I to obtain
the dominant eigenvector. This approach is computationally efficient and guarantees convergence to the correct
solution.

4.4 Python Implementation of the PageRank Algorithm
4.4.1 Iterative Scheme

The PageRank algorithm can be implemented in Python using the NumPy library. The following code snippet
demonstrates the implementation of the iterative scheme:

Program 1: Python Implementation of the iterative scheme for PageRank

import numpy as np

de f p a g e r a n k i t e r a t i v e (H, max iter =1000 , t o l=1e −9):
N = H. shape [0]
I n i t i a l i z e PageRank vec to r
x = np . ones (N) / N
r a n k s h i s t o r y = [x . copy ()]

f o r k in range (max iter) :
x new = H @ x # Update us ing the hyper l ink matrix
r a n k s h i s t o r y . append (x new . copy ())

Check f o r convergence
i f np . l i n a l g . norm(x new − x , 1) < t o l :

break
x = x new

return x , r a n k s h i s t o r y

In this code snippet, the function pagerank iterative accepts the hyperlink matrix H and two optional
arguments max iter and tol. The function initializes the PageRank vector x as a vector of ones divided by the
number of nodes N. It then iteratively updates the PageRank vector using the iterative sceheme. The function
also keeps track of the history of PageRank vectors at each iteration in the ranks history list. This helps us
to study the convergence behavior of the algorithm.

4.4.2 Direct Eigenvector Computation

We had seen that instead of iteratively computing the PageRank vector, we can directly calculate the dominant
eigenvector of the hyperlink matrix. This is acheived by performing Gaussian elimination on the matrix H − I,
followed by back substitution to obtain the solution of the system of equations (H − I)x = 0. Since 1 is an

7

eigenvalue of H, it follows that H − I is singular and the final row in the row-echelon form of H − I will be all
zeros. Hence, we impose an additional constraint that the sum of the entries of x is 1 to obtain the dominant
eigenvector. This is achieved by fixing the final entry of solution vector to be 1, followed by solving the system
of equations and finally dividing the solution vector by the sum of its entries to obtain the dominant eigenvector.
The following code snippet demonstrates the implementation of this approach:

Program 2: Python Implementation of the direct eigenvector computation for PageRank

import numpy as np

de f row eche lon form (A) : #Gaussian El iminat ion with p a r t i a l p i vo t ing
A = A. astype (f l o a t)
rows , c o l s = A. shape

f o r i in range (min (rows , c o l s)) :
Find the p ivot row us ing p a r t i a l p i vo t ing
max row = np . argmax (np . abs (A[i : , i])) + i
A [[i , max row]] = A [[max row , i]]

Make the p ivot element 1
i f A[i , i] == 0 :

cont inue
A[i] = A[i] / A[i , i]

El iminate the column e n t r i e s below the p ivot
f o r j in range (i + 1 , rows) :

A[j] = A[j] − A[j , i] ∗ A[i]

r e turn A

def pagerank gauel im (H) :
N = H. shape [0]
A = H − np . eye (N)
A = row eche lon form (A)
bs = np . z e r o s (N)
xs = np . z e ro s (N)
xs [−1] = 1
f o r i in r eve r s ed (range (N−1)) :

xs [i] = (bs [i] − A[i , i +1:]@xs [i +1 :])/A[i , i]
Backward s u b s t i t u t i o n

return xs /np . sum(xs)

4.5 Operation count analysis
4.5.1 Iterative scheme

The operation count for the iterative scheme can be analyzed as follows:

• Each iteration involves a matrix-vector multiplication, requiring O(n2) operations.

• Suppose that the algorithm converges in m iterations. Then, the total number of operations is O(mn2).

For the iterative scheme, we need to consider the number of iterations required for convergence, which can vary
based on the network structure and the convergence criteria. So, we cannot provide a precise operation count
without knowing a reasonably good upper bound for m.

8

4.5.2 Direct eigenvector computation

The operation count for the direct eigenvector computation can be analyzed as follows:
• Gaussian elimination requires O(2n3/3) operations.

• Back substitution requires O(n2) operations.

• The final division operation requires O(n) operations.

• Hence, the total operation count is O(n3).

4.6 Random Surfer Algorithm
4.6.1 Algorithm Description

The Random Surfer Algorithm provides a simplified yet effective model for simulating the behavior of a user
navigating the web. This approach is designed to address challenges such as dead ends (pages with no outgoing
links) and dangling nodes (pages with no incoming links) by introducing randomness into the user’s browsing
behavior. The key features of the algorithm are as follows:

• Random Clicks: It assumes that a user randomly clicks on links available on a web page, navigating to
the next page based on the hyperlink structure.

• Hypothetical Links: To account for the possibility of dead ends or disconnected pages, hypothetical
links are added between all web pages. This modification ensures that the user can jump to any page
from any other page, maintaining the continuity of the browsing process.

• Adjusted Probabilities: The probability of following a hypothetical link is set to half the probability
of following a real link. This adjustment ensures that real hyperlinks remain the dominant factor in
determining a page’s importance while introducing enough randomness to handle structural anomalies in
the hyperlink matrix.

This algorithm enhances the robustness of the PageRank computation by combining deterministic transi-
tions via hyperlinks with probabilistic jumps between pages, providing a realistic and mathematically sound
framework for web navigation modeling.

4.6.2 Python Implementation

The following code snippet demonstrates the implementation of the Random Surfer Algorithm in Python:

Program 3: Python Implementation of the Random Surfer Algorithm

import numpy as np
def positive_entry_pos (inlist):

pos = []
for i in range(len(inlist)):

if inlist [i]>0:
pos. append (i)

return pos
def random_surfer (H, max_iter =1000 , tol =1e -9):

N = H.shape [0]
random_surfer_H = []
for i in H.T:

pos = positive_entry_pos (i)
k = N + len(pos) - 1
random_surfer_H . append ([2/k if j in pos else 1/k for j in range(N)])

random_surfer_H = np.array (random_surfer_H).T
for i in range(N):

random_surfer_H [i][i] =0
return pagerank_gauelim (random_surfer_H ,max_iter , tol)

9

The function random surfer accepts the hyperlink matrix H as input and computes a new hyperlink matrix
random surfer H by adding hypothetical links and adjusting probabilities. The adjusted hyperlink matrix is
then used to compute the PageRank vector using the dominant eigenvector method (One can also use the
iterative scheme). This implementation provides a comprehensive solution for handling dead ends and dangling
nodes in the web graph.

5 Solutions to Exercise Problems
Exercise 4.94
Problem: Prove lemma 3.
Solution: The proof of lemma 3 is provided in the section on foundational lemmas 3.5.

Exercise 4.95
Problem: Construct the hyperlink matrix corresponding to the network of webpages shown in Figure 1.
Solution: The corresponding hyperlink matrix has been added alongwith the network in the same figure.

Exercise 4.96
Problem: Write code to implement the iterative process defined previously. Make a plot that shows how the
rank evolves over the iterations.
Solution: The code for the iterative process has been provided in the section on Python implementation of the
PageRank algorithm. We make use of it in the following code snippet to plot the evolution of the rank over the
iterations:

Program 4: Python code to plot the evolution of the rank over the iterations

import numpy as np
import matplotlib . pyplot as plt

def pagerank_iterative (H, max_iter =1000 , tol =1e -9):
N = H. shape [0]
x = np.ones(N) / N
ranks_history = [x.copy ()]
for k in range (max_iter):

x_new = H @ x
ranks_history . append (x_new .copy ())
if np. linalg .norm(x_new - x, 1) < tol:

break
x = x_new

return x, ranks_history

H = np. array ([[0 , 0, 1/3 , 0, 0, 0],
[1/2 , 0, 1/3 , 0, 0, 0],
[1/2 , 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1/2 , 1],
[0, 0, 1/3 , 1/2 , 0, 0],
[0, 0, 0, 1/2 , 1/2 , 0]])

final_ranks , ranks_history = pagerank_iterative (H)

for i in range (len(ranks_history [0])):
plt.plot(range (len(ranks_history)), [rank[i] for rank in ranks_history],

label =f’Page {i+1} ’)
plt. title (’ Evolution of PageRank over Iterations ’)
plt. xlabel (’Iteration ’)
plt. ylabel (’ PageRank Value ’)
plt. legend ()
plt.grid ()
plt.show ()

10

One can run this code snippet to obtain the following plot that shows how the rank evolves over the iterations
for the network of pages given in Figure 1.

Figure 2: Plot showing the evolution of the rank over the iterations.

Exercise 4.97
Problem: What must be true about a collection of n pages such that an n×n hyperlink matrix H is a stochastic
matrix?
Solution: From lemma 1, we know that the hyperlink matrix corresponding to a network of webpages is
stochastic if each page has at least one outlink. A proof of this lemma has been provided in the section on
foundational lemmas 3.5.

Exercise 4.98
Problem: Let A be an n × n stochastic matrix and x0 is some initial vector for the difference equation
xn+1 = Axn, where xn is the vector at the nth iteration. Find the steady state solution of the difference
equation. State arguments in support of your answer.
Solution: The steady state solution of the difference equation xn+1 = Axn is given by -

lim
n→∞

xn =
(

1∑n
i=1 v1,i

)
v1

where, v1 is the dominant eigenvector of the stochastic matrix A. A proof of this result has been provided in
the section 4.3 on the direct eigenvector computation for PageRank.

Exercise 4.99
Problem: Discuss how Theorem 1 greatly simplifies the PageRank iterative process. In other words, there is
no reason to iterate at all. Instead, what can be found out?
Solution: Theorem 1 provides a direct method to compute the steady-state rank distribution of the network of
webpages, by computing the dominant eigenvector of the hyperlink matrix. This approach can be implemented
as follows -

1. Perform Gaussian elimination on the matrix H − I to obtain its row-reduced echelon form.

2. Fix the final entry of the solution vector to be 1 and solve the system of equations (H − I)x = 0. This is
done beacuse the matrix H − I is singular and the final row in the row-echelon form of H − I will be all
zeros. This leaves us a degree of freedom to fix the final entry of the solution vector.

11

3. Perform backward substitution to obtain the solution vector.

4. Divide the solution vector by the sum of its entries to obtain the steady-state rank distribution.

Exercise 4.100
Problem: Find the steady state rank distribution of the network of webpages shown in Figure 1 using the
direct eigenvector computation method. Compare the result with the iterative scheme.
Solution: We use the functions pagerank iterative and pagerank gauelim, defined in the section 4.4, for
the hyperlink matrix shown in Figure 1 to compute the steady state rank distribution using the iterative scheme
and the direct eigenvector computation method respectively. The following code snippet demonstrates this:

Program 5: Python code to compare the iterative scheme and direct eigenvector computation method

import numpy as np

H = np. array ([[0 , 0, 1/3 , 0, 0, 0],
[1/2 , 0, 1/3 , 0, 0, 0],
[1/2 , 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1/2 , 1],
[0, 0, 1/3 , 1/2 , 0, 0],
[0, 0, 0, 1/2 , 1/2 , 0]])

final_ranks_iterative , ranks_history = pagerank_iterative (H)
final_ranks_gauelim = pagerank_gauelim (H)

print (" Final ranks obtained using the iterative scheme : ")
print (np. round (final_ranks_iterative , 4))
print (" Final ranks obtained using the dominant eigenvector method : ")
print (np. round (final_ranks_gauelim , 4))

Running this code snippet provides the following output:

Final ranks obtained using the iterative scheme :
[0. 0. 0. 0.4444 0.2222 0.3333]
Final ranks obtained using the dominant eigenvector method :
[0. 0. 0. 0.4444 0.2222 0.3333]

Hence, we can rank the pages Pi, 1 ≤ i ≤ 6 in the decreasing order of importance as follows -
P4 > P6 > P5 > P1 = P2 = P3.
The output shows that the final ranks obtained using the iterative scheme and the direct eigenvector computation
method are the same. This is expected as both methods converge to the same solution.

Exercise 4.101

Figure 3: Network of webpages.

Problem: For the network of pages shown in figure 3,

(a) Write the hyperlink matrix and the initial state x0 for the
iterative scheme.

(b) Find the steady state PageRank using both the iterative
scheme and the direct eigenvector computation method.

(c) Rank the pages in the order of importance.

12

Solution:
(a) The hyperlink matrix and the initial state x0 are as follows:

H =

0 0 0 0 0 0 1
3 0

1
3 0 0 0 0 0 0 0
1
3 1 0 0 1

4 0 1
3 0

0 0 0 0 1
4 1 0 1

0 0 1
2

1
3 0 0 0 0

0 0 0 1
3

1
4 0 0 0

1
3 0 1

2 0 1
4 0 0 0

0 0 0 1
3 0 0 1

3 0

, x0 =

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

(b) The steady state PageRank obtained using both the iterative scheme and the direct eigenvector com-

putation method is as follows:

Final ranks obtained using the iterative scheme :
[0.03169 0.01056 0.09155 0.32746 0.15493 0.14789 0.09507 0.14085]
Final ranks obtained using the dominant eigenvector method :
[0.03169 0.01056 0.09155 0.32746 0.15493 0.14789 0.09507 0.14085]

One can arrive at the above output by running the code snippet provided in the solution to exercise 4.100 with
the hyperlink matrix in this exercise.

(c) The pages can be ranked in the decreasing order of importance as follows -
P4 > P6 > P5 > P3 > P8 > P7 > P2 > P1.

Exercise 4.102
Problem: Implement the random surfer algorithm for the network of webpages shown in Figure 3. Compare
your ranking to the non-random surfer results from the previous problem.
Solution: The following code snippet demonstrates the implementation of the Random Surfer Algorithm for
the network of webpages shown in Figure 3:

Program 6: Python code to implement the Random Surfer Algorithm

import numpy as np

H = np. array ([
[0 ,0 ,0 ,0 ,0 ,0 ,1/3 ,0] ,
[1/3 ,0 ,0 ,0 ,0 ,0 ,0 ,0] ,
[1/3 ,1 ,0 ,0 ,1/4 ,0 ,1/3 ,0] ,
[0 ,0 ,0 ,0 ,1/4 ,1 ,0 ,1] ,
[0 ,0 ,1/2 ,1/3 ,0 ,0 ,0 ,0] ,
[0 ,0 ,0 ,1/3 ,1/4 ,0 ,0 ,0] ,
[1/3 ,0 ,1/2 ,0 ,1/4 ,0 ,0 ,0] ,
[0 ,0 ,0 ,1/3 ,0 ,0 ,1/3 ,0]

])

final_ranks_iter = random_surfer (H, method = ’iterative ’)

print (" Final PageRank values using random surfer algorithm
implemented using iterative scheme :")

print (np. round (final_ranks_iter , 5))

final_ranks_gauelim = random_surfer (H, method = ’gauelim ’)

print (" Final PageRank values using random surfer algorithm
implemented using dominant eigenvector method :")

print (np. round (final_ranks_gauelim , 5))

Running this code snippet, making use of the previously defined functions pagerank iterative, pagerank gauelim
and random surfer, provides the following output:

13

Final PageRank values using random surfer algorithm implemented using iterative scheme:
[0.1114 0.10689 0.14274 0.13704 0.12712 0.11945 0.13425 0.12111]
Final PageRank values using random surfer algorithm implemented using dominant eigenvector method:
[0.1114 0.10689 0.14274 0.13704 0.12712 0.11945 0.13425 0.12111]

Based on this output, we can rank the pages in the decreasing order of importance as follows -
P3 > P4 > P7 > P5 > P8 > P6 > P2 > P1.
We can find that the ranking of pages have changed quite significantly when compared to the non-random surfer
results from the previous problem. Some of the observations are -

• We find that the ranks of all pages lie between 0.1 and 0.15 in the random surfer algorithm, whereas the
ranks obtained using the non-random surfer algorithm lie between 0.03 and 0.33. This indicates that the
random surfer algorithm provides a more uniform distribution of ranks across the pages since it take cares
of dead ends and dangling nodes.

• The ranks of pages P3 and P7 increase significantly in the random surfer algorithm compared to the
non-random surfer algorithm. Although P3 and P7 have a substantial number of incoming links, a surfer
can jump from P3 to P5 but cannot return to P3 or P7. Consequently, the surfer becomes confined to
pages P4, P5, P6, and P8, leading to an increase in the ranks of these pages in the non-random surfer
algorithm. The random surfer algorithm addresses this issue by introducing hypothetical links between
all pages, thereby significantly boosting the ranks of P3 and P7.

• Due to the same reason as above, we find a decrease in the ranks of pages P6 and P5 in the random surfer
algorithm compared to the non-random surfer algorithm.

• The ranks of pages P1 and P2 remain relatively unchanged in both the random surfer and non-random
surfer algorithms. This is because these pages have a relatively low number of incoming links and are not
significantly affected by the random surfer behavior.

• Therefore, the random surfer algorithm provides a more realistic and robust ranking of web pages by
incorporating the behavior of a user navigating the web in a probabilistic manner.

Note: Complete Python scripts for each of the exercises, wherever applicable, can be accessed from the
GitHub repository: https://github.com/Ashlin-V-Thomas/Google-PageRank-Algorithm. If you wish to
run the scripts, you can clone the repository and execute the Python files, ensuring that the required libraries
are installed. The code snippets provided in the solutions to the exercises are excerpts from the complete Python
scripts. The complete scripts contain additional functionalities to enhance the user experience.

Solutions to the Questions during the Presentation
Question 1
Question: How is the iterative scheme similar or different from the power iteration method?
Answer: The iterative scheme is similar to the power iteration method, as both are used to find the dominant
eigenvector of a matrix. But, in the iterative scheme, we neither do normalise the vector after each iteration
nor do we need to find the eigenvalue.

Question 2
Question: What if we have a dead end in the network of webpages?
Answer: In the presence of a dead end, the hyperlink matrix will have a column with all zeros. This will
make the matrix non-stochastic. In such cases, we can implement the Random Surfer Algorithm, which adds
hypothetical links between all pages to ensure that the surfer can navigate to any page from any other page.
This approach helps in handling dead ends and dangling nodes in the network.

14

https://github.com/Ashlin-V-Thomas/Google-PageRank-Algorithm

6 Conclusion
The PageRank algorithm is a powerful tool for ranking web pages based on their importance. By leveraging the
principles of linear algebra and graph theory, PageRank provides a robust and scalable solution for evaluating
the significance of web content. The theoretical foundation of PageRank, including the convergence properties
and computational considerations, offers valuable insights into the algorithm’s behavior. By exploring the
iterative scheme, direct eigenvector computation, and the Random Surfer Algorithm, we gain a comprehensive
understanding of the PageRank methodology and its practical applications. Through the exercises and code
implementations, we have demonstrated the effectiveness of PageRank in ranking web pages and handling
structural anomalies in web networks. By combining theoretical analysis with practical implementations, we
have highlighted the versatility and reliability of the PageRank algorithm in modern web search applications.

References
[1] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer

Networks and ISDN Systems, 30(1-7):107–117, 1998.

[2] Amy N Langville and Carl D Meyer. A survey of eigenvector methods for web information retrieval. SIAM
review, 47(1):135–161, 2005.

[3] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing
order to the web. Stanford InfoLab, 1999.

[4] Eric Sullivan. The google page rank algorithm. Numerical Methods : An Inquiry-Based Approach with
Python.

15

	Overview
	Introduction
	Mathematical Framework
	Internet as a Directed Graph
	Probability Vectors and Stochastic Matrices
	Hyperlink Matrix
	The Role of Graph Theory in PageRank
	Foundational lemmas

	The PageRank Algorithm
	PageRank Vector
	Iterative Scheme for PageRank
	Alternate Formulation: Direct Eigenvector Computation
	Python Implementation of the PageRank Algorithm
	Iterative Scheme
	Direct Eigenvector Computation

	Operation count analysis
	Iterative scheme
	Direct eigenvector computation

	Random Surfer Algorithm
	Algorithm Description
	Python Implementation

	Solutions to Exercise Problems
	Conclusion

